
Nuclear Chemistry Extra Credit

1. Given the equation representing a nuclear reaction in which <i>X</i> represents a nuclide:	8. Which radioisotope has an atom that emits a particle with a mass number of 0 and a charge of +1?
$\begin{array}{l} {}^{232}_{90}\mathrm{Th} \rightarrow {}^{4}_{2}\mathrm{He} + X \\ \\ \text{Which nuclide is represented by } X? \\ \text{A)} {}^{236}_{92}\mathrm{Ra} & \text{B)} {}^{228}_{88}\mathrm{Ra} \\ \text{C)} {}^{236}_{92}\mathrm{U} & \text{D)} {}^{228}_{88}\mathrm{U} \\ \hline \end{array}$ $\begin{array}{l} \text{2. Which nuclear emission has the greatest mass and the least penetrating power? \\ \text{A) an alpha particle } \text{B) a beta particle} \\ \text{C) a neutron } \text{D) a positron} \\ \hline \end{array}$ $\begin{array}{l} \text{3. An unstable nucleus loses the most mass if the nucleus emits} \\ \hline \end{array}$	+1? A) ³ H B) ¹⁶ N C) ¹⁹ Ne D) ²³⁹ Pu 9. Which particle is emitted when an atom of ⁸⁵ Kr spontaneously decays? A) an alpha particle B) a beta particle C) a neutron D) a proton 10. Which two radioisotopes have the same decay mode? A) ³⁷ Ca and ⁵³ Fe B) ²²⁰ Fr and ⁶⁰ Co C) ³⁷ K and ⁴² K D) ⁹⁹ Tc and ¹⁹ Ne 11. Which equation represents positron decay? A) ⁸⁷ ₃₇ Rb $\rightarrow {}^{0}_{-1}e + {}^{87}_{38}Sr$
 A) an alpha particle B) a beta particle C) a positron D) a gamma ray 4. The nucleus of a radium-226 atom is unstable, 	B) ${}^{277}_{92}$ U $\rightarrow {}^{223}_{90}$ Th $+ {}^{4}_{2}$ He C) ${}^{27}_{13}$ Al $+ {}^{4}_{2}$ He $\rightarrow {}^{30}_{15}$ P $+ {}^{1}_{0}$ n
 A hierden of a function for another production of an observed product of a served product of a served product of a served product of an alpha particle, a beta particle, gamma ray B) alpha particle, gamma ray, beta particle C) gamma ray, beta particle, alpha particle D) beta particle, alpha particle, gamma ray 6. Which reaction is an example of natural transmutation? A) ²³⁹₂₄Pu → ²³⁵₉₂U + ⁴₂He B) ²⁷³₁₃Al + ⁴₂He → ³⁰₁₅P + ¹₀n C) ²³⁸₂₄U + ¹₀n → ²³⁹₂₄Pu + 2 ⁰₋₁e D) ²³⁹₂₄Pu + ¹₀n → ¹⁴⁷₅₆Ba + ⁹⁰₃₈Sr + 3 ¹₀n 7. Compared to the mass and the penetrating power of an alpha particle, a beta particle has A) less mass and greater penetrating power C) more mass and less penetrating power 	D) ${}_{6}^{11}C \rightarrow {}_{+1}^{0}e + {}_{5}^{11}B$ 12. Given the nuclear equation: ${}_{10}^{19}Ne \rightarrow X + {}_{9}^{19}F$ What particle is represented by X? A) alpha B) beta C) neutron D) positron 13. Which equation represents a spontaneous nuclear decay? A) C + O ₂ \rightarrow CO ₂ B) H ₂ CO ₃ \rightarrow CO ₂ + H ₂ O C) ${}_{13}^{27}Al + {}_{2}^{4}He \rightarrow {}_{15}^{30}P + {}_{0}^{1}n$ D) ${}_{38}^{90}Sr \rightarrow {}_{-1}^{0}e + {}_{39}^{90}Y$ 14. Which nuclear emission has no charge and no mass? A) alpha particle B) beta particle C) gamma ray D) positron 15. Which nuclear decay emission consists of energy, only? A) alpha particle B) beta particle C) gamma radiation D) positron

16. Which type of radiation is most similar to highenergy x-rays?

B) beta

- A) alpha
- C) neutron D) gamma
- 17. The diagram below represents radiation passing through an electric field.

Which type of emanation is represented by the arrow labeled 2?

- A) alpha particle B) beta particle
- C) positron D) gamma radiation
- 18. Which radioisotopes have the same decay mode and have half-lives greater than 1 hour?
 - A) Au-198 and N-16
 - B) Ca-37 and Fe-53
 - C) I-131 and P-32
 - D) Tc-99 and U-233
- 19. Which nuclide has a half-life that is *less* than one minute?
 - A) cesium-137 B) francium-220
 - C) phosphorus-32 D) strontium-90
- 20. An original sample of the radioisotope fluorine-21 had a mass of 80.0 milligrams. Only 20.0 milligrams of this original sample remain unchanged after 8.32 seconds. What is the half-life of fluorine-21?

A) 1.04s	B) 2.08s
C) 4.16s	D) 8.3s

21. An original sample of K-40 has a mass of 25.00 grams. After 3.9×10^9 years, 3.125 grams of the original sample remains unchanged. What is the half-life of K-40?

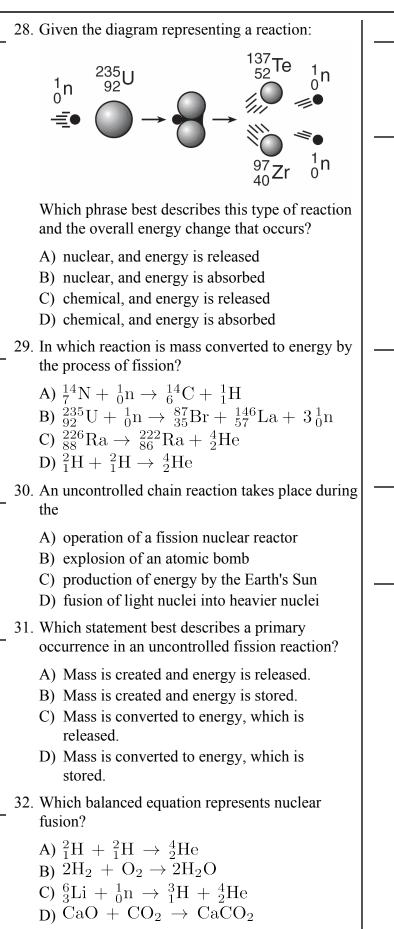
A) 1.3×10^9 y	B) $2.6 \times 10^9 \text{y}$
C) 3.9×10^9 y	D) 1.2×10^9 y

22. Which fraction of an original 20.00-gram sample of nitrogen-16 remains unchanged after 36.0 seconds?

A)
$$\frac{1}{5}$$
 B) $\frac{1}{8}$ C) $\frac{1}{16}$ D) $\frac{1}{32}$

23. Given the balanced equation representing a reaction:

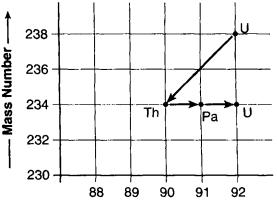
$$^{27}_{13}\text{Al} + ^{4}_{2}\text{He} \rightarrow ^{30}_{15}\text{P} + ^{1}_{0}\text{n}$$


Which type of reaction is represented by this equation?

- A) combustion B) decomposition
- C) saponification D) transmutation
- 24. In which type of reaction is an atom of one element converted to an atom of a different element?
 - A) decomposition B) neutralization
 - C) saponification D) transmutation
- 25. Which equation is an example of artificial transmutation?
 - A) ${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{0}\text{n}$
 - B) $\tilde{U} + 3 \bar{F}_2 \rightarrow U \bar{F}_6$
 - C) $Mg(OH)_2 + 2 HCl \rightarrow 2 H_2O + MgCl_2$
 - D) $\operatorname{Ca} + 2 \operatorname{H}_2 \operatorname{O} \rightarrow \operatorname{Ca}(\operatorname{OH})_2 + \operatorname{H}_2$
- 26. The change that is undergone by an atom of an element made radioactive by bombardment with high-energy protons is called
 - A) natural transmutation
 - B) artificial transmutation
 - C) natural decay
 - D) radioactive decay
- 27. Given the balanced equation representing a nuclear reaction:

 $^{235}_{92}$ U + $^{1}_{0}$ n $\rightarrow ^{142}_{56}$ Ba + $^{91}_{36}$ Kr + 3X + energy Which particle is represented by X?

A) ⁰-1e B) ¹1H C) ⁴2H D) ¹0n


Nuclear Chemistry Extra Credit

- 33. A nuclear reaction in which two light nuclei combine to form a more massive nucleus is called
 - A) addition B) fission
 - C) fusion D) substitution
- 34. High energy is a requirement for fusion reactions to occur because the nuclei involved
 - A) attract each other because they have like charges
 - B) attract each other because they have unlike charges
 - C) repel each other because they have like charges
 - D) repel each other because they have unlike charges
- 35. Which pair of nuclei can undergo a fusion reaction?
 - A) potassium-40 and cadmium-113
 - B) zinc-64 and calcium-44
 - C) uranium-238 and lead-208
 - D) hydrogen-2 and hydrogen-3
- 36. Given the nuclear equation: ${}^{253}_{99}\text{Es} + X \rightarrow {}^{1}_{0}\text{n} + {}^{256}_{101}\text{Md}$ Which particle is represented by X?

A) ${}_{2}^{4}$ He B) ${}_{-1}^{0}$ e C) ${}_{0}^{1}$ n D) ${}_{+1}^{0}$ e

 37. The chart below shows the spontaneous nuclear decay of U-238 to Th-234 to Pa-234 to U-234.

Atomic Number -----> What is the correct order of nuclear decay modes for the change from U-238 to U-234?

- A) β^{-} decay, γ decay, β^{-} decay
- B) $\beta^{\text{-}}$ decay, $\beta^{\text{-}}$ decay, α decay
- C) α decay, α decay, β decay
- D) α decay, β decay, β decay

38. Given the fusion reaction:	46. Which nuclide is paired with a specific use of that nuclide?
${}_{1}^{2}\text{H} + {}_{1}^{2}\text{H} \rightarrow X + \text{energy}$ Which particle is represented by X? A) ${}_{1}^{1}\text{H}$ B) ${}_{2}^{3}\text{He}$ C) ${}_{1}^{3}\text{H}$ D) ${}_{2}^{4}\text{He}$ 39. Given the equation:	 A) carbon-14, treatment of cancer B) cobalt-60, dating of rock formations C) iodine-131, treatment of thyroid disorders D) uranium-238, dating of once-living organisms
$\frac{14}{7}$ N + $\frac{4}{2}$ He $\rightarrow X + \frac{17}{8}$ O	47. The course of a chemical reaction can be traced by using a
When the equation is balanced correctly, which particle is represented by X? A) ${}^{0}_{-1}$ e B) ${}^{1}_{1}$ H C) ${}^{2}_{1}$ H D) ${}^{1}_{0}$ n 40. Which reaction is matched correctly with the particle represented by letter X? A) ${}^{226}_{88}$ Ra $\rightarrow {}^{222}_{86}$ Rn + X; X is an alpha particle. B) ${}^{234}_{90}$ Th $\rightarrow {}^{234}_{91}$ Pa + X; X is an alpha particle. C) ${}^{230}_{90}$ Th $\rightarrow {}^{226}_{88}$ Ra + X; X is a beta particle. D) ${}^{234}_{92}$ U $\rightarrow {}^{230}_{90}$ Th + X; X is a beta particle. 41. Given the nuclear reaction: ${}^{9}_{4}$ Be + X $\rightarrow {}^{12}_{6}$ C + ${}^{1}_{0}$ n	 A) polar molecule B) diatomic molecule C) stable isotope D) radioisotope 48. Radioisotopes used for medical diagnosis must have A) long half-lives and be quickly eliminated by the body B) long half-lives and be slowly eliminated by the body C) short half-lives and be quickly eliminated by the body D) short half-lives and be slowly eliminated by
What is the identity of particle <i>X</i> ?	the body 49. A radioisotope is called a tracer when it is used to
 A) alpha particle B) beta particle C) proton D) neutron 42. During a nuclear reaction, mass is converted into A) charge B) energy C) isomers D) volume 43. Which isotope is most commonly used in the radioactive dating of the remains of organic materials? 	 A) kill bacteria in food B) kill cancerous tissue C) determine the age of animal skeletal remains D) determine the way in which a chemical reaction occurs 50. Radiation used in the processing of food is intended to
A) ${}^{14}C$ B) ${}^{16}N$ C) ${}^{32}P$ D) ${}^{37}K$	A) increase the rate of nutrient decompositionB) kill microorganisms that are found in the food
44. Which radioactive isotope is used in geological dating?	C) convert ordinary nutrients to more stable forms
 A) uranium-238 B) iodine-131 C) cobalt-60 D) technetium-99 45. Which isotope is used to treat cancer? 	D) replace chemical energy with nuclear energy
A) C-14 B) U-238 C) Co-60 D) Pb-206	