Physical Behavior of Matter and Bonding Review

Base your answers to questions 1 through 3 on the information below.
Starting as a gas at $206^{\circ} \mathrm{C}$, a sample of a substance is allowed to cool for 16 minutes. This process is represented by the cooling curve below.

Cooling Curve for a Substance

1. Using the key below, draw two particle diagrams to represent the two phases of the sample at minute 4.

Your response must include at least six particles for each diagram.

One phase of the sample at minute 4

A different phase of the sample at minute 4
2. At what time do the particles of this sample have the lowest average kinetic energy?
3. What is the melting point of this substance?

Base your answers to questions 4 and 5 on the information below.
A student prepared two mixtures, each in a labeled beaker. Enough water at $20 .{ }^{\circ} \mathrm{C}$ was used to make 100 milliliters of each mixture.

Information about Two Mixtures at 20. ${ }^{\circ} \mathrm{C}$

	Mixture 1	Mixture 2
Composition	NaCl in $\mathrm{H}_{2} \mathrm{O}$	Fe filings in $\mathrm{H}_{2} \mathrm{O}$
Student Observations	• colorless liquid no visible solid on bottom of beaker	• colorless liquid \bullet black solid on bottom of beaker
Other Data	• mass of $\mathrm{NaCl}(\mathrm{s})$ dissolved $=2.9 \mathrm{~g}$	• mass of $\mathrm{Fe}(\mathrm{s})=15.9 \mathrm{~g}$ \bullet density of $\mathrm{Fe}(\mathrm{s})=7.87 \mathrm{~g} / \mathrm{cm}^{3}$

4. Describe a procedure to physically remove the water from mixture 1.
5. Classify each mixture using the term "homogeneous" or the term "heterogeneous."

Base your answers to questions 6 and 7 on the information below.

Natural gas is a mixture that includes butane, ethane, methane, and propane. Differences in boiling points can be used to separate the components of natural gas. The boiling points at standard pressure for these components are listed in the table below.

Component of Natural Gas	Boiling Point at Standard Pressure $\left({ }^{\circ} \mathrm{C}\right)$
butane	-0.5
ethane	-88.6
methane	-161.6
propane	-42.1

6. List the four components of natural gas in order of increasing strength of intermolecular forces.
7. Identify a process used to separate the components of natural gas.

Base your answers to questions 8 and 9 on the information below.
Cold packs are used to treat minor injuries. Some cold packs contain $\mathrm{NH}_{4} \mathrm{NO}_{3}(s)$ and a small packet of water at room temperature before activation. To activate this type of cold pack, the small packet must be broken to mix the water and $\mathrm{NH}_{4} \mathrm{NO}_{3}(s)$. The temperature of this mixture decreases to approximately $2^{\circ} \mathrm{C}$ and remains at this temperature for 10 to 15 minutes.
8. Identify both types of bonds in the $\mathrm{NH}_{4} \mathrm{NO}_{3}(s)$.
9. State the direction of heat flow that occurs when the activated cold pack is applied to the body.

Base your answers to questions 10 and 11 on the information below.
Some Properties of Three Compounds at Standard Pressure

Compound	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$	Solubility in 100. Grams of $\mathbf{H}_{2} \mathrm{O}$ at 20. ${ }^{\circ} \mathrm{C}(\mathrm{g})$
ammonia	-33.2	56
methane	-161.5	0.002
hydrogen chloride	-84.9	72

10. Explain, in terms of molecular polarity, why hydrogen chloride is more soluble than methane in water at $20 .{ }^{\circ} \mathrm{C}$ and standard pressure.
11. Convert the boiling point of hydrogen chloride at standard pressure to kelvins.
12. Base your answer to the following question on Heat is added to a sample of liquid water, starting at $80 .{ }^{\circ} \mathrm{C}$, until the entire sample is a gas at $120 .{ }^{\circ} \mathrm{C}$. This process, occurring at standard pressure, is represented by the balanced equation below.

$$
\mathrm{H}_{2} \mathrm{O}(\ell)+\text { heat } \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

On the diagram below, complete the heating curve for this physical change.

Base your answers to questions 13 through 15 on the information below.

Heat is added to a 200.-gram sample of $\mathrm{H}_{2} \mathrm{O}(s)$ to melt the sample at $0^{\circ} \mathrm{C}$. Then the resulting $\mathrm{H}_{2} \mathrm{O}(\ell)$ is heated to a final temperature of $65^{\circ} \mathrm{C}$.
13. Compare the amount of heat required to vaporize a 200.-gram sample of $\mathrm{H}_{2} \mathrm{O}(\ell)$ at its boiling point to the amount of heat required to melt a 200 .-gram sample of $\mathrm{H}_{2} \mathrm{O}(s)$ at its melting point.
14. In the space below, show a numerical setup for calculating the total amount of heat required to raise the temperature of the $\mathrm{H}_{2} \mathrm{O}(\ell)$ from $0^{\circ} \mathrm{C}$ to its final temperature.
15. Determine the total amount of heat required to completely melt the sample.

Base your answers to questions 16 and 17 on the information below.

In 1864, the Solvay process was developed to make soda ash. One step in the process is represented by the balanced equation below.

$$
\mathrm{NaCl}+\mathrm{NH}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow
$$

$\mathrm{NaHCO}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$
16. In the space draw a Lewis electron-dot diagram for the reactant containing nitrogen in the equation.
17. Explain, in terms of electronegativity difference, why the bond between hydrogen and oxygen in a water molecule is more polar than the bond between hydrogen and nitrogen in an ammonia molecule.

Base your answers to questions 18 and 19 on the information below.

Ozone, $\mathrm{O}_{3}(\mathrm{~g})$, is produced from oxygen, $\mathrm{O}_{2}(\mathrm{~g})$ by electrical discharge during thunderstorms. The unbalanced equation below represents the reaction that forms ozone.

$$
\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\text { electricity }} \mathrm{O}_{3}(\mathrm{~g})
$$

18. Explain, in terms of electron configuration, why an oxygen molecule is more stable than an oxygen atom.
19. Identify the type of bonding between the atoms in an oxygen molecule.

Base your answers to questions 20 through 23 on the information below.
Bond energy is the amount of energy required to break a chemical bond. The table below gives a formula and the carbon-nitrogen bond energy for selected nitrogen compounds.

Selected Nitrogen Compounds

Compound	Formula	Carbon-Nitrogen Bond Energy $(\mathrm{kJ} / \mathrm{mol})$
hydrogen cyanide	$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$	890.
isocyanic acid	$\mathrm{H}-\mathrm{N}=\mathrm{C}=\mathrm{O}$	615
methanamine	H $\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}$ I I $\mathrm{H} ~ \mathrm{H}$	293

20. Explain, in terms of charge distribution, why a molecule of hydrogen cyanide is polar.
21. State the relationship between the number of electrons in a carbon-nitrogen bond and carbon-nitrogen bond energy.
22. Identify the noble gas that has atoms in the ground state with the same electron configuration as the nitrogen in a molecule of isocyanic acid.
23. Describe, in terms of electrons, the type of bonding between the carbon atom and the nitrogen atom in a molecule of methanamine.
24. Explain, in terms of electronegativity, why a $\mathrm{P}-\mathrm{Cl}$ bond in a molecule of PCl_{5} is more polar than a $\mathrm{P}-\mathrm{S}$ bond in a molecule of P2S5.

Base your answers to questions $\mathbf{2 5}$ and $\mathbf{2 6}$ on the information below.

The particle diagrams below represent the reaction between two nonmetals, A2 and Q2.

Key
$O=$ Atom of element A
$O=$ Atom of element Q

25. Compare the total mass of the reactants to the total mass of the product.
26. Identify the type of chemical bond between an atom of element A and an atom of element Q.
27. a Draw two different compounds, one in each box, using the representations for atoms of element X and element Z given below.

> Atom of element $X=0$ Atom of element $Z=0$
b Draw a mixture of these two compounds.
33. Which statement describes a chemical property of aluminum?
A) Aluminum is malleable.
B) Aluminum reacts with sulfuric acid.
C) Aluminum conducts an electric current.
D) Aluminum has a density of $2.698 \mathrm{~g} / \mathrm{cm}^{3}$ at STP.
28. Draw an electron-dot diagram for each of the following substances:
a calcium oxide (an ionic compound)
b hydrogen bromide
c carbon dioxide
29. Draw a correct Lewis electron-dot structure for each of the following.
a An atom of hydrogen
b An atom of nitrogen
c A molecule of ammonia $\left(\mathrm{NH}_{3}\right)$
30. An unknown solid was tested and showed the properties listed below:

> Properties
> high melting point
> soluble in water
> conductor of electricity when dissolved in water
> non-conductor of electricity as a solid
> hard surface
a State the type of bonding you would expect of this substance.
b Explain why this substance conducts electricity when dissolved in water.
c Explain why it is hard.
31. Which sample of CO_{2} has a definite shape and a definite volume?
A) $\mathrm{CO}_{2}(\mathrm{aq})$
B) $\mathrm{CO}_{2}(\mathrm{~g})$
C) $\mathrm{CO}(\ell)$
D) $\mathrm{CO}_{2}(\mathrm{~s})$
32. Which pair represents two forms of an element in the same phase at STP but with different structures and different properties?
A) $I_{2}(s)$ and $I_{2}(g)$
B) $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{O}_{3}(\mathrm{~g})$
C) $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{Hg}(\mathrm{g})$
D) $\mathrm{H}_{2}(s)$ and $\mathrm{H}_{2} \mathrm{O}(\ell)$
34. Particles are arranged in a crystal structure in a sample of
A) $\mathrm{H}_{2}(\mathrm{~g})$
B) $\mathrm{Br} 2(\mathrm{I})$
C) $\operatorname{Ar}(g)$
D) $\mathrm{Ag}(\mathrm{s})$
35. Base your answer to the following question on Which two particle diagrams represent mixtures of diatomic elements?

Key
$O=$ atom of one element
$=$ = atom of another element

A

B

C

D
A) A and B
B) A and C
C) B and C
D) B and D
36. Which substance can be decomposed by chemical means?
A) aluminum
B) octane
C) silicon
D) xenon
37. Which equation represents a physical change?
A) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})+6.01 \mathrm{~kJ} \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$
B) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+483.6 \mathrm{~kJ}$
C) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I} 2(\mathrm{~g})+53.0 \mathrm{~kJ} \rightarrow 2 \mathrm{HI}(\mathrm{g})$
D) $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})+66.4 \mathrm{~kJ} \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
38. Which statement best describes the molecules of $\mathrm{H}_{2} \mathrm{O}$ in the solid phase?
A) They move slowly in straight lines.
B) They move rapidly in straight lines.
C) They are arranged in a regular geometric pattern.
D) They are arranged in a random pattern.
39. In a laboratory where the air temperature is $22^{\circ} \mathrm{C}$, a steel cylinder at $100 .{ }^{\circ} \mathrm{C}$ is submerged in a sample of water at $40 .{ }^{\circ} \mathrm{C}$. In this system, heat flows from
A) both the air and the water to the cylinder
B) both the cylinder and the air to the water
C) the air to the water and from the water to the cylinder
D) the cylinder to the water and from the water to the air
40. Which unit is used to express the energy absorbed or released during a chemical reaction?
A) kelvin
B) joule
C) volt
D) torr
41. The temperature of a sample of matter is a measure of the
A) average kinetic energy of its particles
B) average potential energy of its particles
C) total kinetic energy of its particles
D) total potential energy of its particles
42. Which sample of water contains particles having the highest average kinetic energy?
A) 25 mL of water at $95^{\circ} \mathrm{C}$
B) 45 mL of water at $75^{\circ} \mathrm{C}$
C) 75 mL of water at $75^{\circ} \mathrm{C}$
D) 95 mL of water at $25^{\circ} \mathrm{C}$
43. Which temperature is equal to 120 . K?
A) $-153^{\circ} \mathrm{C}$
B) $-120 .{ }^{\circ} \mathrm{C}$
C) $+293^{\circ} \mathrm{C}$
D) $+393^{\circ} \mathrm{C}$
44. The temperature of a sample of a substance changes from $10 .{ }^{\circ} \mathrm{C}$ to $20 .{ }^{\circ} \mathrm{C}$. How many Kelvin does the temperature change?
A) 10 .
B) 20 .
C) 283
D) 293
45. Which Kelvin temperature is equal to $-73^{\circ} \mathrm{C}$?
A) 100 K
B) 173 K
C) 200 K
D) 346 K
46. Which process is exothermic?
A) boiling of water
B) melting of copper
C) condensation of ethanol vapor
D) sublimation of iodine
47. Which statement describes the particles of an ideal gas based on the kinetic molecular theory?
A) The gas particles are relatively far apart and have negligible volume.
B) The gas particles are in constant, nonlinear motion.
C) The gas particles have attractive forces between them.
D) The gas particles have collisions without transferring energy.
48. According to the kinetic molecular theory, which statement describes the particles in a sample of an ideal gas?
A) The force of attraction between the gas particles is strong.
B) The motion of the gas particles is random and straight-line.
C) The collisions between the gas particles cannot result in a transfer of energy between the particles.
D) The separation between the gas particles is smaller than the size of the gas particles themselves.
49. Under which conditions of temperature and pressure would helium behave most like an ideal gas?
A) 50 K and 20 kPa
B) 50 K and 600 kPa
C) 750 K and 20 kPa
D) 750 K and 600 kPa
50. The concept of an ideal gas is used to explain
A) the mass of a gas sample
B) the behavior of a gas sample
C) why some gases are monatomic
D) why some gases are diatomic
51. A real gas behaves least like an ideal gas under the conditions of
A) low temperature and low pressure
B) low temperature and high pressure
C) high temperature and low pressure
D) high temperature and high pressure
52. Under the same conditions of temperature and pressure, which of the following gases would behave most like an ideal gas?
A) $\mathrm{He}(\mathrm{g})$
B) $\mathrm{NH}_{3}(g)$
C) $\mathrm{Cl}_{2}(\mathrm{~g})$
D) $\mathrm{CO}_{2}(\mathrm{~g})$
53. Which rigid cylinder contains the same number of gas molecules at STP as a 2.0-liter rigid cylinder containing $\mathrm{H}_{2}(\mathrm{~g})$ at STP?
A) 1.0-L cylinder of $\mathrm{O}_{2}(\mathrm{~g})$
B) 2.0-L cylinder of $\mathrm{CH}_{4}(\mathrm{~g})$
C) 1.5-L cylinder of $\mathrm{NH}_{3}(\mathrm{~g})$
D) 4.0-L cylinder of $\mathrm{He}(\mathrm{g})$
54. Which two samples of gas at STP contain the same total number of molecules?
A) 1 L of $\mathrm{CO}(\mathrm{g})$ and 0.5 L of $\mathrm{N}_{2}(\mathrm{~g})$
B) 2 L of $\mathrm{CO}(g)$ and 0.5 L of $\mathrm{NH}_{3}(g)$
C) 1 L of $\mathrm{H}_{2}(\mathrm{~g})$ and 2 L of $\mathrm{Cl}_{2}(\mathrm{~g})$
D) 2 L of $\mathrm{H}_{2}(\mathrm{~g})$ and 2 L of $\mathrm{Cl}_{2}(\mathrm{~g})$
55. At $25^{\circ} \mathrm{C}$, gas in a rigid cylinder with a movable piston has a volume of 145 mL and a pressure of 125 kPa . Then the gas is compressed to a volume of 80 mL . What is the new pressure of the gas if the temperature is held at $25^{\circ} \mathrm{C}$?
A) 69 kPa
B) 93 kPa
C) 160 kPa
D) 230 kPa
56. Which graph represents the relationship between pressure and volume for a sample of an ideal gas at constant temperature?
A)

Volume
B)

C)

D)

Volume
57. A sample of gas occupies a volume of 50.0 milliliters in a cylinder with a movable piston. The pressure of the sample is 0.90 atmosphere and the temperature is 298 K. What is the volume of the sample at STP?
A) 41 mL
B) 49 mL
C) 51 mL
D) 55 mL
58. Given the balanced equation representing a reaction: $\mathrm{Cl} 2 \rightarrow \mathrm{Cl}+\mathrm{Cl}$

What occurs during this reaction?
A) A bond is broken as energy is absorbed.
B) A bond is broken as energy is released.
C) A bond is formed as energy is absorbed.
D) A bond is formed as energy is released.
59. Which of these elements has an atom with the most stable outer electron configuration?
A) Ne
B) Cl
C) Ca
D) Na
60. Which element has an atom with the greatest tendency to attract electrons in a chemical bond?
A) carbon
B) chlorine
C) silicon
D) sulfur
61. Which bond is least polar?
A) $\mathrm{As}-\mathrm{Cl}$
B) $\mathrm{Bi}-\mathrm{Cl}$
C) $\mathrm{P}-\mathrm{Cl}$
D) $\mathrm{N}-\mathrm{Cl}$
62. The bonds in BaO are best described as
A) covalent, because valence electrons are shared
B) covalent, because valence electrons are transferred
C) ionic, because valence electrons are shared
D) ionic, because valence electrons are transferred
63. Which formula represents an ionic compound?
A) H_{2}
B) CH_{4}
C) $\mathrm{CH}_{3} \mathrm{OH}$
D) $\mathrm{NH}_{4} \mathrm{Cl}$
64. A substance that does not conduct electricity as a solid but does conduct electricity when melted is most likely classified as
A) an ionic compound
B) a molecular compound
C) a metal
D) a nonmetal
65. A molecular compound is formed when a chemical reaction occurs between atoms of
A) chlorine and sodium
B) chlorine and yttrium
C) oxygen and hydrogen
D) oxygen and magnesium
66. What is the total number of electron pairs shared between the two atoms in an O_{2} molecule?
A) 1
B) 2
C) 6
D) 4
67. Which type of substance is soft, has a low melting point, and is a poor conductor of heat and electricity?
A) network solid
B) molecular solid
C) metallic solid
D) ionic solid
68. A solid substance is an excellent conductor of electricity. The chemical bonds in this substance are most likely
A) ionic, because the valence electrons are shared between atoms
B) ionic, because the valence electrons are mobile
C) metallic, because the valence electrons are stationary
D) metallic, because the valence electrons are mobile
69. Which molecule has a nonpolar covalent bond?
A) $\mathrm{H}-\mathrm{H}$
B) $\underset{\substack{\mathrm{H} \\ \hline \\ \mathrm{H}}}{\mathrm{N}} \mathrm{H}$
C) $\mathrm{H}^{-\mathrm{O}}, \mathrm{H}$
D) $\mathrm{H}-\mathrm{Cl}$
70. Which formula represents a nonpolar molecule?
A) CH_{4}
B) HCl
C) $\mathrm{H}_{2} \mathrm{O}$
D) NH_{3}
71. Which of the following compounds has the highest boiling point?
A) $\mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{H}_{2} \mathrm{~S}$
C) $\mathrm{H}_{2} \mathrm{Se}$
D) HzTe
72. Given the formula representing a molecule:

$$
H-C \equiv C-H
$$

The molecule is
A) symmetrical and polar
B) symmetrical and nonpolar
C) asymmetrical and polar
D) asymmetrical and nonpolar
73. Which formula represents a nonpolar molecule?
A) HCl
B) $\mathrm{H}_{2} \mathrm{O}$
C) NH_{3}
D) CH_{4}
74. Which formula represents a polar molecule?
A) H_{2}
B) $\mathrm{H}_{2} \mathrm{O}$
C) CO_{2}
D) CCL_{4}
75. Which formulas represent two polar molecules?
A) CO_{2} and HCl
B) CO_{2} and CH_{4}
C) $\mathrm{H}_{2} \mathrm{O}$ and HCl
D) $\mathrm{H}_{2} \mathrm{O}$ and CH_{4}

Chemistry

Name \qquad Class \qquad Date

1.	32.	65.
2.	33.	66.
3.	34.	67.
4.	35.	68.
5.	36.	69.
6.	37.	70.
7.	38.	71.
8.	39.	72.
9.	40.	73.
10.	41.	74.
11.	42.	75.
12.	43.	
13.	44.	
14.	45.	
15.	46.	
16.	47.	
17.	48.	
18.	49.	
19.	50.	
20.	51.	
21.	52.	
22.	53.	
23.	54.	
24.	55.	
25.	56.	
26.	57.	
27.	58.	
Diagram on Separate Sheet	59.	
28. Diagram on Separate Sheet	60.	
$29 .$	61.	
$30 .$	63.	
31.	64.	

